Publications

Welcome to Prof. Bhaskaran Muralidharan's Computational Nanoelectronics & Quantum Transport Group

Yearwise Publications

2023

  1. “Resonant weak-value enhancement for solid-state quantum metrology”, M. Subramanian, A. Mathew and B. Muralidharan, Phys. Rev. Applied (in press), (2023).
  2. “High-frequency complex impedance analysis of the two-dimensional semiconducting MXene Ti2CO2“, A. K. Mandia, R. Kumar, N. A. Koshi, S-C. Lee, S. Bhattacharjee and B. Muralidharan, Phys. Scr., 98, 095955, (2023).
  3. “Power efficient ReLU design for neuromorphic computing using the spin Hall effect”, V. Vadde, B. Muralidharan and A. Sharma, J. Phys. D: Applied Physics, 56, 425001, (2023).
  4. “Advancing carrier transport models for InAs/GaSb type-II superlattice mid-wavelength infrared photodetectors “, R. Kumar, A. K. Mandia, A. Singh and B.Muralidharan , Phys. Rev. B, 107, 235303, (2023).
  5. “Can magnetotransport properties provide insight into the functional groups in semiconducting MXenes?”, N. A. Koshi, A. K. Mandia, B. Muralidharan, S-C. Lee and S. Bhattacharjee, Nanoscale, (in press) (2023). [Selected as hot article in Nanoscale]
  6. “Orthogonal spin-current injected magnetic tunnel junction for convolutional neural networks”, V. Vadde, B. Muralidharan and A. Sharma, IEEE Trans. Elec. Dev., (in press) (2023).
  7. “Effectuating tunable valley selection via multiterminal monolayer graphene devices”, S. Tapar and B. Muralidharan,Phys. Rev. B, 107, 205415, (2023).
  8. “Identifying Pauli blockade regimes in bilayer graphene double quantum dots”, A. Mukherjee and B. Muralidharan, 2D Materials, 7, 035006, (2023).
  9. “Conductance spectroscopy of Majorana Zero Modes in superconductor-magnetic insulator nanowire hybrid systems”, R. Singh and B. Muralidharan, Comms Physics, 6, 36, (2023).

2022

  1. “Robust subthermionic topological transistor action via anti-ferromagnetic exchange”, S. Banerjee, K. Jana, A. Basak, M. S. Fuhrer, D. Culcer and B. Muralidharan,Phys. Rev. Applied, 18, 054088 (2022).
  2. “Ballistic graphene arrays for ultra-high pressure sensing”, A. Sinha, P. Priyadarshi and B. Muralidharan, J. Appl. Phys., 132, 154501, (2022).
  3. “Silicene: An excellent material for flexible electronics”, S. Sahoo, A. Sinha, N. A. Koshi, S-C Lee, S. Bhattacharjee and B. Muralidharan, J. Phys. D: Applied Physics, 42, 425301, (2022).
  4. “Electrical and magneto-transport in the 2D semiconducting Mien Ti2CO2”, A. K. Mandia, N. A. Koshi, B. Muralidharan, S-C Lee and S. Bhattacharjee, Journal of Materials Chemistry C, 10, 9062, (2022).
  5. “Nonlocal conductance and the detection of Majorana zero modes: insights from von Neumann entropy”, A. Kejriwal and B. Muralidharan, Phys. Rev. B (Letter), 105, L161403, (2022). [Editors’ Suggestion]
  6. “Investigation of phonon lasing like auto-parametric instability between 1-D flexural modes of electrostatic ally actuated microbes”, P. Kumar, B. Muralidharan, D. Pawaskar and M. Inamdar, Int. Jour. Mech. Sci., 220 107135, (2022)
  7. “Proposal for a solid-state magnetoresistive Larmor quantum clock”, A. Mathew, K. Camsari and B. Muralidharan, Phys. Rev. B, 105, 144418,(2022).
  8. “Robust all-electrical valley filtering using monolayer 2D-Xenes”, K. Jana and B. Muralidharan, npj 2D Materials and Interfaces, 6, 19, (2022).
  9. “Comprehensive quantum transport analysis of M-superlattice structures for barrier infrared detectors”, A. Singh, S. Mukherjee and B. Muralidharan, Journal of Applied Physics, 131, 094303 (2022).

2021

  1. “Momentum relaxation effects in 2D-Xene field effect device structures”, A. Basak, P. Brahma and B. Muralidharan, Journal of Physics D: Applied Physics, 55, 075302, (2021).
  2. “Role of dephasing on the conductance signatures of Majorana zero modes”, C. Duse, P. Sriram, K. Gharavi, J. Baugh and B. Muralidharan, Journal of Physics: Condensed Matter, 33, 365301, (2021).
  3. “Proposal for energy efficient spin transfer torque magnetoresistive random access memory device”, A. Sharma, A. Tulapurkar and B. Muralidharan, J. Appl. Phys., 129, 233901 (2021).
  4. “Carrier localisation and mini-band modelling of InAs/GaSb based type-II superlattice infrared detectors”, S. Mukherjee, A. Singh, A. Bodhankar and B. Muralidharan, J. Phys. D: Applied Physics, 54, 345104, (2021).
  5. “Linear and non-linear transport across a finite Kitaev chain: An exact analytical study”, N. Leumer, M. Grifoni, B. Muralidharan and M. Marganska, Phys. Rev. B, 103, 165432, (2021).
  6. “Comprehensive studies on steady-state and transient electronic transport in In0.52Al0.48As”, A. K. Mandia, B. Muralidharan, S-C. Lee and S. Bhattacharjee, Journal of Electronic Materials. 50, 3819, (2021).
  7. “AMMCR: Ab initio model for mobility and conductivity calculation by using Rode Algorithm”, AK Mandia, B Muralidharan, JH Choi, SC Lee, S Bhattacharjee, Computer Physics Communications, 107697, (2021).

2020

  1. “Aharonov-Bohm effect as a probe of Majorana fermions”, T. Bartolo, J. S. Smith, B. Muralidharan, C. Mueller, T. M Stace and J. H. Cole, Phys. Rev. Research, 2, 043430, (2020).
  2. “Three terminal vibron coupled hybrid quantum dot thermoelectric refrigeration”, S Mukherjee, B De, and B Muralidharan, Journal of Applied Physics, 128, 234303, (2020).
  3. “Graphene as a nanoelectromechanical reference piezoresistor”, A Sinha, A Sharma, P Priyadarshi, A Tulapurkar, B Muralidharan, Physical Review Research 2 (4), 043041, (2020).
  4. “Exact eigenvectors and eigenvalues of the finite Kitaev chain and its topological properties”, Nico Leumer, Magdalena Marganska, Bhaskaran Muralidharan and Milena Grifoni, Journal of Physics: Condensed Matter, 32 (44), 445502, (2020).
  5. “Thermoelectric figure of merit enhancement in dissipative superlattice structures”, Pankaj Priyadarshi and Bhaskaran Muralidharan, J. Phys. D (Applied Physics), 54,095301, (2020).
  6. “Enhancement of Thermal Spin Transfer Torque via Bandpass Energy Filtering”, Pankaj Priyadarshi, Abhishek Sharma, and Bhaskaran Muralidharan, IEEE Transactions on Nanotechnology 19, 469-474, (2020).
  7. “Magnetization switching in superlattice via thermal spin transfer torque” Pankaj Priyadarshi and Bhaskaran Muralidharan, AIP Advances, 10, 015150, (2020).
  8. “Manipulation of non-linear heat currents in the dissipative Anderson–Holstein model”, B. De and B. Muralidharan, J. Phys.: Condens. Matter 32 035305.

2019

  1. “Piezoresistance in ballistic graphene”, Abhinaba Sinha, Abhishek Sharma, Ashwin Tulapurkar, V Ramgopal Rao and Bhaskaran Muralidharan, Phys. Rev. Materials 3, 124005.
  2. “Semi-classical electronic transport properties of ternary compound AlGaAs2: role of different scattering mechanisms”, S. Chakrabarty, A. K. Mandia, B. Muralidharan, S. C. Lee and S. Bhattacharjee, J. Phys.: Condens. Matter 32 135704.
  3. “Probing strain modulation in a gate-defined one-dimensional electron system”, M. H. Fauzi, M. F. Sahdan, M. Takahashi, A. Basak, K. Sato, K. Nagase, B. Muralidharan, and Y. Hirayama, Phys. Rev. B 100, 241301(R).
  4. “Optimization of a hybrid phase-change memory cell using the water cycle algorithm”, J. Bahl and B. Muralidharan, Journal of Computational Electronics 18 (4), 1192-1200.
  5. “Supercurrent interference in semiconductor nanowire Josephson junctions”, P. Sriram, S. S. Kalantre, K. Gharavi, J. Baugh, B. Muralidharan, Phys. Rev. B 100, 155431.
  6. “Quantum thermoelectrics based on 2-D semi-Dirac materials”, A. Mawrie and B. Muralidharan, Phys. Rev. B 100, 081403(R).
  7. “Energy band-pass filtering in superlattice phase change memories”, J. Bahl, P. Priyadarshi and B. Muralidharan, IEEE Trans. Elec. Dev, 66, 3809, (2019).
  8. “Optimized Fabry-Perot cavity engineered nanoscale thermoelectric generators”, S. Mukherjee and B. Muralidharan, Accepted in Phys. Rev. Applied.
  9. “Skyrmion based spin- torque oscillator”, D. Das, B. Muralidharan and A. Tulapurkar, JMMM 491 (2019) 165608.
  10. “Ab-initio semiclassical electronic transport in ZnSe: the role of inelastic scattering mechanisms”, A. K. Mandia, R. Pattnaik, B. Muralidharan, S. Bhattacharjee and S-C. Lee, J.Phys: Cond. Mat. 31 (34), 345901, (2019).
  11. “Direction dependent giant optical conductivity in 2-D semi-Dirac materials”, A. Mawrie and B. Muralidharan, Phys. Rev. B, 99, 075415, (2019).
  12. “Effects of elastic dephasing on scaling of ultra-small magnetic tunnel junctions”, D. Das, A. Tulapurkar and B. Muralidharan, IEEE Trans. Magnetics, 55, 1400404, (2019).

2018

  1. “Performance analysis of nanostructured Peltier coolers”, A. Singha and B. Muralidharan, J. Appl. Physics, 124, 144901, (2018).
  2. “Non-equilibrium Green’s function study of magneto-conductance signatures in clean and disordered nanowires”, A. Lahiri, K. Gharavi, J. Baugh and B. Muralidharan, Phys. Rev. B, 98, 125417 (2018).
  3. “Classical information driven quantum dot thermal machines”, A. Shah, S. Vinjanampathy and B. Muralidharan, Annals of Physics, 396, 564, (2018).
  4. “Performance projections for two-dimensional materials for radio-frequency applications”, S. Singh, K. Thakar, N. Kaushik, B. Muralidharan and S. Lodha, Phys. Rev. Applied, 10, 014022, (2018).
  5. “Band-pass Fabry Perot magnetic tunnel junctions”, A. Sharma, A. A. Tulapurkar and B. Muralidharan, Appl. Phys. Lett., 112, 192404 (2018).
  6. “Speeding up Thermalisation via Open Quantum System Variational Optimisation”, N. Suri, F. C. Binder, B. Muralidharan and S. Vinjanampathy, Eur. Phys. Jour. B, (in press) (2018).
  7. “Superlattice design for optimal thermoelectric generator performance”, P. Priyadarshi, A. Sharma, S. Mukherjee and B. Muralidharan, J. Phys. D (Applied Physics), 51, 185301, (2018).
  8. “Superior Thermoelectric Design via Antireflection Enabled Lineshape Engineering”, S. Mukherjee, P. Priyadarshi and B. Muralidharan, IEEE Trans. Elec. Dev, 65, 1896, (2018).
  9. “Non-linear phonon Peltier effect in dissipative quantum dot systems”, B. De and B. Muralidharan, Scientific Reports, 8, 5185, (2018).
  10. “Scaling projections on spin transfer torque magnetic tunnel junctions”, D. Das, A. Tulapurkar and B. Muralidharan, IEEE Trans. Elec. Dev., 65, 724-732, (2018).
  11. “Role of phase breaking processes on spin transfer torque nano-oscillators”, A. Sharma, A. Tulapurkar and B. Muralidharan, AIP Adv., 8, 055913, (2018).

2017

  1. “Eliminating reservoir density-of-states fingerprints in Coulomb blockade spectroscopy”, A. Manna, B. Muralidharan and S. Mahapatra, ArXiv: 1712.04168, (2017).
  2. “Resonant spin transfer torque nano-oscillators”, A. Sharma, A. Tulapurkar and B. Muralidharan, Phys. Rev Applied, 8, 064014, (2017).
  3. “Bayesian view of single qubit clocks and an energy accuracy trade-off”, M. Gopalkrishnan, V. Kandula, P. Sriram, A. Deshpande and B. Muralidharan, Phys. Rev. A, 96,032339, (2017).
  4. “A general theoretical framework for characterizing solvated electronic structure via voltammetry: Applied to Carbon Nanotubes”, M. S. Hossain, B. Muralidharan and K. Bevan, Journal of Physical Chem. C, 121 (33), 18288-18298, (2017).
  5. “Incoherent scattering can favorably influence energy filtering in nanostructured thermoelectrics”, A. Singha and B. Muralidharan, Scientific Reports, 7, 7879, (2017).
  6. “Resistively-detected lineshapes in a quasi one-dimensional electron gas”, M. H. Fauzi, A. Singha, M. F. Sahdan, M. Takahashi, K. Sato, K. Nagase, B. Muralidharan and Y. Hirayama, Phys. Rev. B (Rapid Comm), 95, 241404(R), (2017).
  7. “Landauer-Büttiker approach for hyperfine mediated electronic transport in the integer quantum Hall regime”, A. Singha, M. H. Fauzi, Y. Hirayama and B. Muralidharan, Phys. Rev. B, (95), 115416, (2017).
  8. “Resonant enhancement in nanoscale thermoelectric performance via electronic thermal conductivity engineering”, U. Patil and B. Muralidharan, Physica E: Low dimensional systems, 85, 27-33, (2017).

2016

  1. “Thermoelectric study of dissipative quantum dot heat engines”, B. De and B. Muralidharan, Phys. Rev. B, 94, 165416, (2016).
  2. “Ultrasensitive nanoscale magnetic field sensors based on resonant spin filtering”, A. Sharma, A. Tulapurkar and B. Muralidharan, IEEE Trans. Elec. Dev., 63, 11, 4527-4534, (2016)

2015

  1. “Programming current reduction via enhanced asymmetry-induced thermoelectric effects in vertical nanopillar phase change memory cells”, J. Bahl, B. Rajendran and B. Muralidharan, IEEE Trans. Elec. Dev, 62, 12, 4015-4021, (2015).
  2. “Exploring Packaging strategies of Nano-embedded Thermoelectric Generators”, A. Singha, S. D. Mahanti and B. Muralidharan, AIP Advances, 5, 107210 (2015).
  3. “Optimal quantum dot heat-to-pure-spin-current converters”, S. Buddhiraju and B. Muralidharan, Physica B, 478, 153-160, (2015).
  4. “Proposal for a domain-wall nano-oscillator driven by non-uniform spin currents”, S. Sharma, B. Muralidharan and A. Tulapurkar, Scientific Reports, 5, 14647 (2015).

2014

  1. “Thermoelectric pure spin currents through quantum dots weakly coupled to non-magnetic contacts”, S. Buddhiraju and B. Muralidharan, ArXiv: 1412.3706, (2014).
  2. “Enhancement of spin transfer torque switching via resonant tunneling”, N. Chatterji, A. A. Tulapurkar and B. Muralidharan, Appl. Phys. Lett., (105), 232410, (2014).
  3. “Role of dual nuclear baths on spin blockade leakage current bistabilities”, S. Buddhiraju and B. Muralidharan, J. Phys.: Condens. Matter, (26), 485302, (2014).
  4. “Power and efficiency analysis of a realistic resonant tunneling diode thermoelectric”, A. Agarwal and B. Muralidharan, Appl. Phys. Lett., (105), 013104, (2014).

2013

  1. “Thermoelectric spin accumulation and long time spin precession in a non-collinear quantum dot spin-valve”, B. Muralidharan, and M. Grifoni, Phys. Rev. B (88), 045402, (2013).

Publications prior to joining IIT Bombay

  1. “Performance analysis of an interacting quantum dot thermoelectric set up”, B. Muralidharan, and M. Grifoni, Phys Rev. B (85), 155423, (2012).
  2. “Role of Multiparticle excitations in Coulomb Blockaded transport”, B. Muralidharan, L. Siddiqui, and A. W. Ghosh, J. Phys: Condens. Matter, (20), 374109-374122, (2008), (invited article on special issue on charge transfer).
  3. “Rectification by charging-Contact induced asymmetry in molecular conductors”, O. D. Miller, B. Muralidharan, N. Kapur, and A. W. Ghosh, Phys. Rev. B, (77), 125427-125437, (2008).
  4. “NEMO-3D based atomistic simulation of a double quantum-dot structure for spin-blockaded transport”, B. Muralidharan, H. Ryu, Z. Huang, and G. Klimeck, J. Comp. Elect., (7), 403-406, (2008).
  5. “Theory of high bias Coulomb Blockade through ultra short molecules”, B. Muralidharan, A. W. Ghosh, S. K. Pati and S. Datta, IEEE Trans. Nano, (6), 536-544, (2007).
  6. “Generic Model for Current Collapse in Spin Blockaded Transport”, B. Muralidharan, and S. Datta, Phys. Rev. B, (76), 035432-035439, (2007).
  7. “Conductance in molecular quantum dots”, B. Muralidharan, A. W. Ghosh, and S. Datta, J. Molecular Simulation, (34), 751-758, (2006).
  8. “Probing electronic excitations in molecular conduction”, B. Muralidharan, A. W. Ghosh, and S. Datta, Phys. Rev. B, (74), 155410-155415, (2006).
  9. “Design of double-passed Arrayed Waveguide Gratings for femtosecond pulse processing”, B. Muralidharan, V. Balakrishnan, and A. M. Weiner, IEEE Journal of Lightwave Technology, (24), 586-597, (2006).