————————Vision:—————————- Our research aims to shape the future of quantum technologies by leveraging computational quantum transport to explore and control the microscopic phenomena that drive next-generation devices. By pushing the boundaries of electron, spin, and energy transport, our work offers profound insights into the design of electronic and spintronic devices, with applications extending from information technology to biological systems. Our research not only meets academic curiosity but also aligns with industrial demand. CNQT offers a dynamic and interdisciplinary environment that blends theory, computation, and practical application. By contributing to various areas (some of them are listed below), we believe that we will be at the heart of developments that promise to reshape industries and technologies across the globe. Current efforts include:
Microscopic Simulation and Modeling of III-V Superlattices for IR Technologies: Semiclassical to Quantum Perspectives
- “Insights into optical absorption and dark currents of the 6.1 Å type-II superlattice absorbers for MWIR and SWIR applications”, A. Singh, and B. Muralidharan, J. Appl. Phys. 136, 055703, (2024).
- “Advancing carrier transport models for InAs/GaSb type-II superlattice mid-wavelength infrared photodetectors “, R. Kumar, A. K. Mandia, A. Singh and B.Muralidharan , Phys. Rev. B, 107, 235303, (2023).
- “Comprehensive quantum transport analysis of M-superlattice structures for barrier infrared detectors”, A. Singh, S. Mukherjee and B. Muralidharan, Journal of Applied Physics, 131, 094303 (2022).
- “Carrier localization and mini-band modelling of InAs/GaSb based type-II superlattice infrared detectors”, S. Mukherjee, A. Singh, A. Bodhankar and B. Muralidharan, J. Phys. D: Applied Physics, 54, 345104, (2021).
Exploring the Quantum Realm: Materials and Systems Modeling
- “Resonant weak-value enhancement for solid-state quantum metrology”, M. Subramanian, A. Mathew and B. Muralidharan, Phys. Rev. Applied, 20, 044065, (2023).
- “Proposal for a solid-state magnetoresistive Larmor quantum clock”, A. Mathew, K. Camsari and B. Muralidharan, Phys. Rev. B, 105, 144418,(2022).
- “Speeding up Thermalisation via Open Quantum System Variational Optimisation”, N. Suri, F. C. Binder, B. Muralidharan and S. Vinjanampathy, Eur. Phys. J. Spec. Top., 227, 203, (2018).
- “Classical information driven quantum dot thermal machines”, A. Shah, S. Vinjanampathy and B. Muralidharan, Annals of Physics, 396, 564, (2018).
Two-Dimensional Materials and Devices: Graphene, TMDCs, Xenes, and Beyond
- “Magneto-transport in the monolayer MoS2 material system for high-performance field-effect transistor applications”, A. K. Mandia, R. Kumar, S. C. Lee, S. Bhattacharjee and B. Muralidharan, Nanotechnology, 35, 305706, (2024).
- “Density Functional Theory of Straintronics Using the Monolayer-Xene Platform: A Comparative Study”, S. Sahoo, N. A. Koshi, S. C. Lee, S. Bhattacharjee and B. Muralidharan, ACS Appl. Nano Mater., 7, 2939, (2024).
- “High-frequency complex impedance analysis of the two-dimensional semiconducting MXene Ti2CO2“, A. K. Mandia, R. Kumar, N. A. Koshi, S-C. Lee, S. Bhattacharjee and B. Muralidharan, Phys. Scr., 98, 095955, (2023).
- “Effectuating tunable valley selection via multiterminal monolayer graphene devices”, S. Tapar and B. Muralidharan, Phys. Rev. B, 107, 205415, (2023).
- “Identifying Pauli blockade regimes in bilayer graphene double quantum dots”, A. Mukherjee and B. Muralidharan, 2D Materials, 7, 035006, (2023).
Spintronics for Neuromorphic Computing: Device-Circuit-Network Co-design
- “Domain wall and magnetic tunnel junction hybrid for on-chip learning in UNet architecture”, V. Vadde, B. Muralidharan and A. Sharma, APL Mach. Learn. 2, 036101, (2024).
- “Power efficient ReLU design for neuromorphic computing using the spin Hall effect”, V. Vadde, B. Muralidharan and A. Sharma, J. Phys. D: Applied Physics, 56, 425001, (2023).
- “Orthogonal spin-current injected magnetic tunnel junction for convolutional neural networks”, V. Vadde, B. Muralidharan and A. Sharma, IEEE Trans. Elec. Dev., 70, 3943, (2023).
Materials for Flexible Electronics: Innovations and Advances
- “Silicene: An excellent material for flexible electronics”, S. Sahoo, A. Sinha, N. A. Koshi, S-C Lee, S. Bhattacharjee and B. Muralidharan, J. Phys. D: Applied Physics, 42, 425301, (2022).
TCAD-Driven Modeling and Design Analysis of Next-Generation Sensors and Detectors
- “Dark current performance enhancement in type-II superlattice photodetectors via pBn barrier engineering”, P. Kawde, A. Singh and B. Muralidharan, Accepted in the IEEE Transactions on Electron Devices (2024)..
- “Performance Analysis of Optically Gated MoS2 Photosensor for Visible Light Detection”, J. Talukdar and B. Muralidharan, IEEE Sensors Journal, 24, 23810, (2024).
Advanced Logic and Memory Functionalities
- “Proposal for energy efficient spin transfer torque magnetoresistive random access memory device”, A. Sharma, A. Tulapurkar and B. Muralidharan, J. Appl. Phys., 129, 233901 (2021).
- “Enhancement of Thermal Spin Transfer Torque via Bandpass Energy Filtering”, P. Priyadarshi, A. Sharma, and B. Muralidharan, IEEE Transactions on Nanotechnology 19, 469-474, (2020).
- “Skyrmion based spin- torque oscillator”, D. Das, B. Muralidharan and A. Tulapurkar, JMMM 491,165608 (2019).
- “Band-pass Fabry Perot magnetic tunnel junctions”, A. Sharma, A. A. Tulapurkar and B. Muralidharan, Appl. Phys. Lett., 112, 192404 (2018).
- “Scaling projections on spin transfer torque magnetic tunnel junctions”, D. Das, A. Tulapurkar and B. Muralidharan, IEEE Trans. Elec. Dev., 65, 724-732, (2018).
- “Resonant spin transfer torque nano-oscillators”, A. Sharma, A. Tulapurkar and B. Muralidharan, Phys. Rev Applied, 8, 064014, (2017).
“Topo”-tronics and Quantum Hybrid Systems
- “Conductance spectroscopy of Majorana Zero Modes in superconductor-magnetic insulator nanowire hybrid systems”, R. Singh and B. Muralidharan, Comms Physics, 6, 36, (2023).
- “Nonlocal conductance and the detection of Majorana zero modes: insights from von Neumann entropy”, A. Kejriwal and B. Muralidharan, Phys. Rev. B (Letter), 105, L161403, (2022). [Editors’ Suggestion]
- “Robust all-electrical valley filtering using monolayer 2D-Xenes”, K. Jana and B. Muralidharan, npj 2D Materials and Interfaces, 6, 19, (2022).
- “Supercurrent interference in semiconductor nanowire Josephson junctions”, P. Sriram, S. S. Kalantre, K. Gharavi, J. Baugh, B. Muralidharan, Phys. Rev. B 100, 155431.
- “Quantum thermoelectrics based on 2-D semi-Dirac materials”, A. Mawrie and B. Muralidharan, Phys. Rev. B 100, 081403(R) (2019).
- “Landauer-Büttiker approach for hyperfine mediated electronic transport in the integer quantum Hall regime”, A. Singha, M. H. Fauzi, Y. Hirayama and B. Muralidharan (10.1103/PhysRevB.95.115416).
Control and Manipulation of Spins
- “Resistively-detected lineshapes in a quasi one-dimensional electron gas”, M. H. Fauzi, A. Singha, M. F. Sahdan, M. Takahashi, K. Sato, K. Nagase, B. Muralidharan and Y. Hirayama, Phys. Rev. B (Rapid Comm), 95, 241404(R), (2017).
- “Landauer-Büttiker approach for hyperfine mediated electronic transport in the integer quantum Hall regime”, A. Singha, M. H. Fauzi, Y. Hirayama and B. Muralidharan, Phys. Rev. B, (95), 115416, (2017).
- “Role of dual nuclear baths on spin blockade leakage current bistabilities”, S. Buddhiraju and B. Muralidharan, J. Phys.: Condens. Matter, (26), 485302, (2014).
- “NEMO-3D based atomistic simulation of a double quantum-dot structure for spin-blockaded transport”, B. Muralidharan, H. Ryu, Z. Huang, and G. Klimeck, J. Comp. Elect., (7), 403-406, (2008).
- “Generic Model for Current Collapse in Spin Blockaded Transport”, B. Muralidharan, and S. Datta, Phys. Rev. B, (76), 035432-035439, (2007).
Nanoscale and Spintronic Energy Conversion
- “Comparative analysis of thermoelectric properties in bulk 2H and monolayer MoS2: a first-principles study at high temperatures”, R. Kumar and B. Muralidharan, Phys. Scr., 99, 115944, (2024).
- “Electronic Fabry-Pérot cavity engineered nanoscale thermoelectric generators”, S. Mukherjee and B. Muralidharan (10.1103/PhysRevApplied.12.024038).